ディジタル・オーディオ機器におけるサンプリング・ジッターの諸特性とその要因

西村 明† 小泉 宣夫‡
† 東京情報大学 総合情報学部 情報文化学科
〒 265-8501 千葉市若葉区谷当町 1200-2
TEL 043-236-4658, akira@rsch.tuis.ac.jp
‡ 東京情報大学 総合情報学部 情報システム学科
nkoizumi@rsch.tuis.ac.jp

あらまし いくつかの種類のディジタルオーディオ機器におけるサンプリングジッター測定の結果を示した。解析信号を用いたジッター測定は、CD-Rメディア、信号のビットパターン、ディジタル信号伝送系、DAC、ADCそしてクロック発振器といった数の要因が、オーディオ機器の微細なジッター特性に影響を与えていることを示した。ジッター測定を通じて得られた最大のジッターフレームは、ジッター周波数 2 Hz 以上において、2 ns を下回った。

キーワード 解析信号, 時間領域, CD プレーヤー, DA コンバータ, DVD プレーヤー

Characteristics and factors of sampling jitter observed in digital audio products

Akira NISHIMURA† and Nobuo KOIZUMI‡
† Department of Media and Cultural Studies, Faculty of Informatics,
Tokyo University of Information Sciences
1200-1, Yatoh-cho, Wakaba-ku, Chiba-city, Chiba 265-8501, Japan
TEL +81-43-236-4658, akira@rsch.tuis.ac.jp
‡ Department of Information systems, Faculty of Informatics,
Tokyo University of Information Sciences
nkoizumi@rsch.tuis.ac.jp

Abstract Results of sampling jitter measurement for several kinds of digital audio products are introduced. Jitter measurement using analytic signals revealed that several factors, that is, bit patterns of a signal, CD-R media, a system of digital signal transmission, DAC, ADC and a clock generator, affect minute jitter characteristic of digital audio products. Throughout the jitter measurement, maximum amplitude of a jitter component was less than 2 ns above jitter frequency of 2 Hz.

Key words analytic signal, time-domain, CD player, DA converter, DVD player

1. はじめに

DA/AD 変換時のサンプリングクロックに生じる時間ゆらぎ（サンプリング・ジッター）は、録音や再生時にひずみをもたらす原因のひとつである。これまで我々は、解析信号を用いて、DA/AD 変換器に生じている周波数変動波（ジッター波）および振幅変動波を時間領域において測定する方法を提案し[1]、測定誤差の要因について検討をした[2]。さらにこれに、従来は困難であった音性信号の録音再生時に生じるかもしれないジッターの測定法に拡張した[3]。

本稿では、それらの測定法を用いて実測されたディジタルオーディオ機器のジッター特性を紹介し、その要因を調べることを目的とする。

2. 解析信号を用いるジッター測定法

角周波数 ωm の正弦波を DA 変換し、すなわち AD 変換する測定系を考える。このとき測定系において、任意の振幅変動 a(t) と、角周波数 ωm、振幅 J である正弦波のジッターが加えられたときの観測信号の時間波形 x(t) を示す。
\[x(t) = a(t) \sin(\omega_c(t + J \sin(\omega_m t))) \]

(1)

\[y(t) = a(t) \exp(j(\omega_c(t + J \sin(\omega_m t)) - \pi/2)) \]

(2)

なる [4]，解析信号は DFT によって求めることができるので，その時刻位相角と搬送周波数より，測定において生じるジッターポルフィと，振幅変動波形を同時に求めることができる [1]。

実際には，測定信号の \(\omega_c \) は，DA 社および AD 変換器間のサンプリング周波数の僅かな差のため，測定用信号の \(\omega_c \) とは僅かに異なる，このため測定信号の \(\omega_c \) は，観測信号の瞬時周波数を平均して求める。

この測定手法は，測定系に存在する歪みや雑音成分の影響を受け，そこで，測定信号とサンプリング周波数の 1/4 である純音を用いた測定と，それに近い他の信号周波数を用いた測定を行った，ジッタースペクトルを比較し，共通するスペクトル成分を抽出することによって，歪みやノイズの影響を少なくすることもできる [4]。

音楽信号を測定信号とする場合には，音楽信号の前後に挿入した短音の位相情報をつけ用いて，観測信号と測定信号ととのサンプリング周波数ずれおよび位相ずれを高精度に補正し，分析時に両方の信号に帯域制限を行なった後で，それらの瞬時位相の比較を行う [3]。

解析信号を用いるジッター測定法の特徴は，以下の通りである [1]，

- 一般的なディジタルオーディオ機器のみを用いて測定が可能で，特殊な測定機器を必要としない
- ジッター波形を得ることができ，時間分解能が高い
- 最大でナイキスト周波数の半分までのジッター周波成分を測定可能
- 観測信号に含まれる振幅変動成分とジッターコンボを分離して測定可能
- 測定結果には，DAC と ADC の双方のジッター特性が重畳されたものが得られるが，複数の測定対象機器のジャイアススペクトルを比較することによって，DAC, ADC いずれか一方のジャイアススペクトルを推定することが可能

3. 実測結果

サンプリング・ジッターの測定は，CD あるいは DVD ブレーカにして CD-R に記録した信号音を読み取，プレーヤ内蔵 DAC あるいはディジタル接続した DAC から再生したアナログ信号を，ADC で変換したディジタル信号に対して行った。パソコン用サウンドカードの場合は，測定用ディジタル信号を再生用ソフトウェアを用いて再生したものを ADC でディジタル信号に変換した。プレーヤ測定時の接続を Fig.1 に示した。本稿では，合計二十余のディジタルオーガニオーディオ機器を組み合わせて行った測定の結果が得られたジャイアススペクトルの中から，特徴的な結果が得られたもののみを示すことで取り上げた機器については，Table 1 に特徴と略号を示した。

測定の結果が得られるジッター波形について，1 秒間の Hanning

<table>
<thead>
<tr>
<th>label</th>
<th>specification</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP1</td>
<td>Digital Servo Ratio Locked Loop</td>
<td>built-in DAC1</td>
</tr>
<tr>
<td>CDP2</td>
<td>1bit ΔΣ</td>
<td></td>
</tr>
<tr>
<td>DVD A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC1</td>
<td>22-Bit D.R.I.V.E. 32 × oversampling</td>
<td>built-in DAC of CDP1</td>
</tr>
<tr>
<td>DAC2</td>
<td>20-Bit × 16/ch MMB 8 × oversampling</td>
<td></td>
</tr>
<tr>
<td>DAC3</td>
<td>24-Bit</td>
<td>PCI Audio Card</td>
</tr>
<tr>
<td>ADC1</td>
<td>24-Bit</td>
<td>PCI Audio Card</td>
</tr>
<tr>
<td>ADC2</td>
<td>16-Bit, ΔΣ, 64 × oversampling</td>
<td>SCSI-BOX</td>
</tr>
<tr>
<td>PCA1</td>
<td>ACO7 Codec</td>
<td>PCI Sound Card</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CD-R(Measurement Signal)</th>
<th>Anlogic Audio Cable</th>
<th>Digital Signal</th>
<th>Observed Digital Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>Transmitter</td>
<td>DAC</td>
<td>DA</td>
</tr>
<tr>
<td>CD Player</td>
<td>Optical or Coaxial Converter</td>
<td>Analogic Audio Cable</td>
<td>AD Converter</td>
</tr>
<tr>
<td>Clock Gen.</td>
<td>DA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Block diagram of measurement.

測定系において想定されるジッターの発生部は，Fig.1 内においては，メディア読み取り部，ディジタル信号伝送経路，ADC, DAC であり，それぞれの部で発生するジッターは積算されていく。よって，注目したい箇所のメディア機器を入れ替えた測定を行い，結果を比較することによって，そこで生成されているであろうジッターの様相を調べることが可能となる，ここでは特に触れない限り，プレーヤと DAC の接続は，光ケーブルを用いた結果である。

3.1 CD ブレーカーと DA コンバータ

Fig.2 には CDP1 内蔵 DAC 生産時のジャイアススペクトルを示した。CDP1 内蔵 DAC(DAC1) は外部ディジタル入力の再生も可能であり，Fig.3 には，CDP2 の読み取ったディジタル信号を DAC1 の再生時のジャイアススペクトルを示した。Fig.4 は CD3 の読み取ったディジタル信号を DAC1 に入力して再
生した結果である。これらを比較すると、同じ DAC を用いてもクロック源が異なるとジェッター特性に明らかな違いが存在することが分かる。

Fig. 2 Jitter spectrum of CDP1(DAC1).

Fig. 3 Jitter spectrum of DAC1 connected to CDP2.

内蔵 DAC と外部 DAC を比較するため、Fig.5 には DVD-Audio プレイヤ (DVDA1) にて内蔵 DAC から再生した結果を、Fig.6 には DVDA1 のディジタル出力を、DAC2 にて再生した結果を示した。これらの比較より、DAC2 とディジタル伝送系は、約 200Hz 以下のジェッター成分を増幅し、それ以上のジェッター成分を抑制しているものと考えられる。

3.2 DVD プレイヤー

DVD-A1 において、音声トラック (24bit, 96kHz, 2-ch) に純音信号が記録された DVD-Video ディスクを再生して得られた測定結果を Fig.7 に示した。また、同じプレイヤーにおいて、DVD-Audio フォーマット (24bit, 96kHz, 2-ch) にて記録を行った DVD-R ディスクを再生して得られた測定結果を Fig.8 に示した。これと、Fig.5 に示した CD-R 再生時の測定結果を比較すると、3 者で明らかにジェッタースペクトルが異なることが分かる。この違いの原因が、メディア、記録フォーマット、プレイヤーの DAC を駆動するサンプリングクロックのいずれであるか現時点では明らかでない。

3.3 パソコン用オーディオ機器

パソコン用サウンドカードには、ジェッター以外にもノイズや歪みを含む部分が目立つものも多いた、一方で、安価ながら高品質な製品も存在し、一般オーディオ機器と同程度かやや多いジェッター量のものもあった。Fig.9 には、市販価格 4000 円程度の PCI サウンドカード（サンプリング周波数 48kHz）で得られたジェッタースペクトルを示した。

さらに、高級な製品は DAC/ADC チップに高級オーディオ用と同じものを採用したものもあり、そのような機器のジェッター量は一般に低かった。今回の測定で主に使用した ADC1 は、ア
3.4 信号に依存するジッター: J-test signal

Dunnらは、信号のビットパターンに周期性のある特殊な信号 (J-test signal) を再生する際にサンプリング・ジッターが生じることを指摘している。それは主としてディジタル信号伝送経路のローバス特性によって、信号に巻きが生じ、ビットクラックに偏差が生じることが原因である。

Dunnらが示したJ-test signalは、AES3規格のディジタル信号において、24bit精度の最大振幅の半分と最小振幅の半分を4サンプル周期で繰り返す信号 (搬送波) に、192サンプル周期で振幅ゼロと1LSBを繰り返す信号 (変調波) を足し合わせた信号である。AES3規格はEIAJ CP-1201と同じであり、付加ビット情報以外は、コンシューマ用のS/PDIFと同じビット表現を行う。AES3規格ではディジタル信号は2の補数で表現されるため、この信号を16進数表示すると、

0x0C0000 0x0C0000 0x600000 0x400000 (X 24)
0xBFFFF 0xBFFFF 0x3FFFF 0x3FFFF (X 24)

の繰り返しとなる。左右チャンネルに同じ信号が用いられる場合、AES3規格において、192サンプリング (=1 プロック) は、ほとんど0ビット値のみ、次の1プロックはほとんど1ビット値のみ、の信号が繰り返されることになる。

AES3規格において1サンプリング(32bit)のうち、最初のブリンブル部(4bit)を除くビット値は、ビット境界で必ず位数が切り替わるバイフェーズ方式でエンコードされるため、理想的な0ビットデータ値の連続と理想的な1ビットデータ値の連続は、それぞれFig.11上と中の実線によってその位数変化は表される。

一般に、DACに外部から入力されたAES3信号からクロック信号を抽出する際には、ビット境界の位数ゼロクロス時刻 (ビットクロック＝サンプリング周期の64の1) を利用し、これを時間平均するような仕組み (PLL回路)によって、ビットクロックの細かなジッターを抑圧したサンプリングクロックを生成する。ディジタル伝送系にアナログローバス特性が加わったとき、伝送されてくるディジタル信号波形はFig.11下の実線のようにそれぞれ変化し、0ビット値信号の1ビット値信号よりゼロクロス時間帯が遅れます。よって、変調波の周波数と等しい矩形ジャッタ波が生じる。なお、ここではその効果を分かりやすく示すため、極端な例としてローバスフィルタとして時定数300nsのRC積分器を用いている。

J-test信号の周期は192サンプル以外で、変調周波数が異なるだけ、大きな違いはないと、そして、このようなビットパターンを持つ信号はAES3規格信号のうち最もサンプリング・ジッターが発生しやすい極端な例である。

今回の測定では、AES3規格での24bit信号を伝送し受信するオーディオ機器が無かったため、16bit信号により生成したJ-test信号を測定用信号として用いた。1周期を200サンプルとしたとき、データ領域にAuxiliary領域を含めた24bit分の16進数表現は、

0x00C000 0x00C000 0x004000 0x004000 (X 25)
0x00BFFFF 0x00BFFFF 0x003FFFF 0x003FFFF (X 25)

となる。そしてビットパターンのアンバランスは保たれる。また、搬送波がサンプリング周波数の1/4のみの場合には、ジッター測定結果には、測定系に存在するノイズ成分の影響を受ける [2] ため、搬送波をサンプリング周波数の1/6とし
た J-test 信号を用いて測定を行い、それに共通するジッタースペクトル成分を得た。変調波の周波数は 100 サンプルと 200 サンプルの 2 種類で測定を行ったが、周期の逆数となる周波数に現れるジッター成分振幅に大きな違いは見られなかった。そこで、以降は 100 サンプル周期の結果のみを示す。

ブレーカーとその内蔵 DAC を用いるとき、J-test 信号によっ
てジッターが発生したブレーカーは CDP1 だけであり、J-test 信
号を再生したときのジッタースペクトルを Fig.12 に示した。ディジタル伝送系を含んだ測定系において、J-test 信号を用い
た測定結果は次節に示した。

Fig. 11 AES3 intersymbol interference.

Fig. 12 Jitter spectrum of CDP1 induced by J-test signal.

3.5 デジタルケーブル

CD ブレーカーと DAC との接続において、コンシューマー市場
では同軸ケーブル (S/PDIF) と光ケーブル接続 (TOSLINK) が
一般的である。先に示した Fig.3 は CDP2 と DAC1 を光ケーブル
で接続した場合の測定結果であり、それらを同軸ケーブル
で接続した場合の測定結果である Fig.13 と比較すると、ジッ
tーサスペクトルにはかなり違いが見られる。これは測定結果の
中でも極端な例ではあるが、接続方式によってジッタースペク
トルは著しく変化した。

ディジタル同軸接続用ケーブルとして、中級品 (長さ 3m) の
ディジタルオーディオ用ケーブル、アナログ音声信号用オーディ
オケーブル (長さ 7m) を比較したところ、純音信号を用いた
測定結果に違いはほとんど見られなかったが、J-test 信号を用
いた測定では、変調波の周波数に現れるジッター振幅がアナロ
グ音声信号用オーディオケーブル用いた場合に 2 倍ほど大き
くなることが分かった。Fig.14 にディジタルオーディオ用ケー
ブルを用いたときの測定結果を、Fig.15 にアナログオーディオ
ケーブルを用いたときの測定結果を示した。

これはアナログ音声信号用オーディオケーブルの特性イン
ピダンスが 1100 程度であり、ディジタル信号の信頼性が
のインピーダンス不整がもとでディジタル信号波形が変形
し、サンプリング・ジッターの原因になっていると考えられる。
J-test 信号は、そのような伝送経路の状態を、測定結果に反映
しやすい信号だといえる。

Fig. 13 Jitter spectrum of DAC1 connected to CDP2 via a coaxial
digital cable. Measurement signal is a J-test signal modulated by 44kHz rectangular wave.

Fig. 14 Jitter spectrum of DAC1 connected to CDP1 via a coaxial
digital cable. Measurement signal is a J-test signal modulated by 4.4kHz rectangular wave.

3.6 CD-R メディアによる影響

CD ブレーカーの場合、メディア要因およびデータ読み取り部
においてジークが生じやすいと通説的には考えられている。
そして、インターネット上では、メディア上のビットを読んだ
際の RF 信号におけるアイバーナーに含まれるジークの様
相が、メディアによって変化するデータ (注) とも公開されている。
もっとも実際には、読取られたデータは CIRC にコード後に
バッファメモリに蓄えられて、水晶精度のクロックを分周したサ
ンプリング・クロックを用いてアナログ波形に変換されるため、
原理的にはデータ読み取り時のジークは、再生信号に影響を与
えないと考えられる。しかし、データ読み取り時の制御回路や
エラー訂正回路の働きが、それを記録されるディジタル回路のアナロ
グ動作に電気的な影響を与えるという考えもある。

(注) 1: http://www.ne.jp/asahi/afu/efu/media/media.html
プレーヤにおいて、C1/C2 エラー（訂正可能な読み取りエラー）が生じる条件で、ジャッター特性が変化するかを調べるために、CD-R メディアの記録面に、中心で 90 度交わるカッターナイフによる 4 本の傷を与え、それを用いて測定を行った。再生音に、傷によって原データに回復不能であったときに生じるパルス状のノイズが部分的に混入する。よって、そのようなノイズが混入していない部分では、エラー訂正が成功裏に行われていることは明らかである。ノイズが混入しなかった 5 秒間の観測信号に変化が見られ、いずれの機器条件でも傷のないメディアで得られた測定結果と同一結果が得られ、今回測定対象機器では、エラー訂正によってジャッターが生じなかったといえる。

CD-R メディア要因としては、記録面材質、記録速度、記録位置、メディア製造メーカーなど様々な要因が挙げられ、それらが測定対象機器の組み合わせに依存することも考えられるため、測定条件の組み合わせは膨大な数にのぼる。ここでは、同じパソコン用 CD-R ドライブを用いて記録したシアニン色 CD-R について、等倍と 6 倍速の記録速度の違いと、メディア銘柄の違い（製品を供給している OEM のメイカーは同じであるが、ディスク銘柄と製造メイカーは S ソフト、T ソフトと異なる）を比較した。

記録速度の違いによってジャッター特性は影響を受けなかった。しかしながら、販売メイカーが異なる 2 種のメディアについては、CDP2 を DAC1 あるいは DAC2 に対して同軸あるいは光接続した場合のみ、ジャッタースペクトルに明らかな違いが生じた。Fig.16 の上に、CDP2 を DAC2 に光学接続した測定を実施した上で Names を 10 倍して示した。Fig.16 の下には、同じ測定装置において、T ソフトメディアを重ねる測定結果を示した。約 50Hz 以下の帯域で、双方のジャッタースペクトルは異なり、全体的に S ソフトメディアの方がジャッター生成が多い。

CD-R とディスクのラベル面へのガムテープ貼付によるバケーションや、中央穴をカッターナイフで 1 方向のみ削って広げた箇所、信号の記録位置（メイカーの外周と内周）といった要因をテストしたが、明らかなジャッター特性の変化は得られなかった。

3.7 経年変化

同じ測定機器について、同じメディアを再生して測定を行った場合、測定の時間間隔が 1 時間以内程度であれば、測定の再現性是非常に高い。しかし、それ以上の時間スケールで、測定時間間隔が長いため、ジャッター振幅はほとんど変化しないが、ジャッター周波数がわずかに異なってくることがある。さらに、それ以上の時間間隔が長いため、振幅、周波数を急激に変化する場合がある。Fig.17 には、CDP2 を DAC2 に光学接続した測定装置において、前述の T ソフトのメディアを用いて、6ヵ月後にどのようにジャッタースペクトルが変化したかを示した。引数月後には、当初なかった 15 Hz に 113 ps のジャッター成分が現れている。このジャッター成分は DAC や ADC、CD-R メディア固有のものではないが、同機関に行った他機器の測定結果より明らかである。CD2 とそのディジタル伝送系の経年変化と考えられる。このような明らかな経年変化は、他の測定対象機器に見られなかった。

3.8 機器への外的要因

CDP1 を内蔵 DAC を用いて再生した場合、ADC2 にて測定を行った場合のみ、26Hz のジャッター成分が現れた（Fig.18）。同じ ADC2 を用いて測定した他の CDP および DAC には、このジャッター成分は認められなかったため、電源あるいはアナログ信号線を通じた DAC2 と CDP1 との相互干渉などの外的要因による影響と考えられる。

Fig. 15 Jitter spectrum of DAC1 connected to CDP2 via a coaxial audio cable. Measurement signal is a J-test signal modulated by 441-Hz rectangular wave.

Fig. 16 Jitter spectrum of DAC2 connected to CDP2 via an optical digital cable. Upper: The result of manufacture S. Jitter amplitude is multiplied by 10. Lower: The result of manufacture T.

Fig. 17 Changes in jitter spectrum of DAC2 connected to CDP2.
4. 考察

解析信号を用いたジッター測定は、その振幅においてわずか1 ns ≈ 数10 ps程度の違いを明らかにした。今回測定したデジタルオーディオ機器のジッターは、ジッター成分周波数2 Hz以上において振幅2 ns未満という、従来の聴覚特性の知見からは検知限（もっとも感度の高い変調周波数3 Hzにおいて振幅に換算し約4〜10ns [7]）以下であり、音質的には全く問題のない量であった。

藤原ら [8,9] は、デジタル領域において音響信号に人工的な帯域帯圧力を加えて、その検知限を測定している。その結果、最も感度の高い被験者およびサンプル曲の場合でも、実効値で表した検知限は500ns程度であった。しかし、帯域帯压のジッターよりは、同じ振幅でも歪み成分エネルギーが限定された周波数に集中しやすい纯音性ジッターの方なお、検知限は低くなくなることが予想される。実際のオーディオ機器の測定結果も、純音性ジッターの方が高い。

アナログ機器を用いた周波数変調音に対する検知実験が行われたが、30〜40年前があったことから、当時の実験精度および測定精度を、現代の機器を用いて再確認する必要性はあるかもしれないと。また、より現実のオーディオ機器に近いジッター条件で、かつよりシビリアな刺激音条件下において、ジッター特性の変化によって音質が生じるのかについても興味を感じた。

今回の測定結果の目新しい点は、CD−メディアによるサンプリング・ジッターの違いを、デジタル・インターフェース信号上のジッターではなく、アナログ領域に変換された音響信号を用いて定量的に測定できた事例が、学会および産業界を含めておおよそ初めてある。ただし、その違い自体は明確であったが、絶対値としては100ps以下という極微量であった。よって空気で流れるような。CD−メディアによる音質の変化が、本当にサンプリング・ジッターによるものなのかについては、疑問が大きいに残る。もっとも、今回使用したメディア以外に、より大きくジッター特性が異なるメディアがあるかも知れない。

5. まとめ

解析信号を用いたジッター測定法は、一般のデジタルオーディオ機器を用いて、直接我々の耳に届く音を測定するためのアナログ信号に現れるジッターの影響を高精度に測定できることが特徴である。そして本報告では、機器にその要因による微細なジッター特性の違いの例を明らかにした。機器の音質とジッター特性との関係を議論する場合には、このようにジッター測定が欠かせないであろう。

謝辞

本研究の一部は東京情報大学学術フロンティアプロジェクト研究費の補助を受けた。

文献

